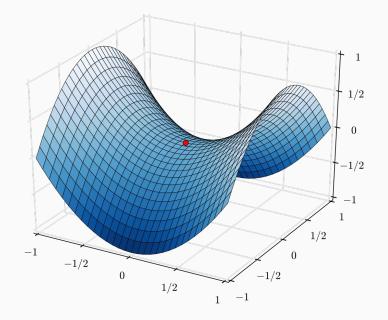
AMSC 663 Project Proposal

Marco Bornstein Advisor: Dr. Furong Huang

Problem Formulation

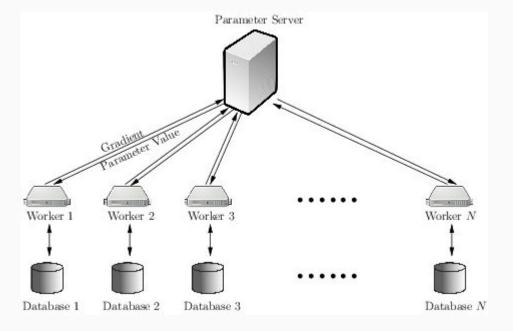
Given a non-convex function *f* potentially having many saddle points, what properties will guarantee asynchronous coordinate descent to escape from strict saddle points and converge to a local minima?

Non-convex Issues



- In non-convex settings, convergence to <u>first-order</u> stationary points is not satisfactory
- Saddle points are the main cause culprit, as they are first-order stationary yet correspond to highly suboptimal solutions
- For many non-convex problems, it is sufficient to find a local minimum

Synchronization Issues



- Parallel computing breaks data up and processes it simultaneously by multiple workers
- Algorithms (like SGD) require all computed gradients be returned to the global server before next iterate
- The speed of parallel computing thus relies on the slowest worker

Current Literature

Non-convex Optimization:

- → How to Escape Saddle Points Efficiently, Jin et al. (gradient descent) <u>https://arxiv.org/pdf/1703.00887.pdf</u>
- → On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points, Jin et al. (GD/SGD) <u>https://arxiv.org/pdf/1902.04811.pdf</u>

Asynchronous Coordinate Descent (ACD):

→ Asynchronous Coordinate Descent under More Realistic Assumptions, Sun et al. <u>https://arxiv.org/pdf/1705.08494.pdf</u>

Methods

Escaping saddle points:

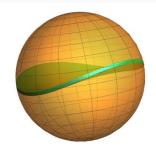
→ Jin et al. shows that perturbing a point at a potential saddle is successful (no Hessian information needed)

Asynchronous Coordinate Descent (ACD) with delays:

→ Sun et al. provides framework to prove that asynchronous block coordinate descent converges for bounded delays

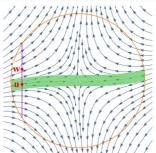
Escaping Saddle Points

- \rightarrow Say that a point x^s is stuck at a saddle point
- → Taking a ball of radius r (perturbation ball) centered at x^s, select a point over a uniform distribution to be a perturbed point x^p
- → The volume of the perturbation ball largely consists of regions where points will <u>not</u> be pulled back towards the saddle point
- → Thus, it is likely that x^p can escape the saddle point if perturbed correctly



Definition II.4. For a ρ -Hessian Lipschitz function $f(\cdot)$, we say that x is a second-order stationary point if $\|\nabla f(x)\| = 0$ and $\lambda_{min}(\nabla^2 f(x)) \ge 0$; we also say x is ϵ -second-order stationary point if:

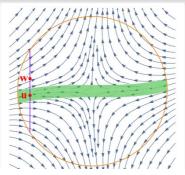
 $\|\nabla f(x)\| \leq \epsilon$, and $\lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho\epsilon}$

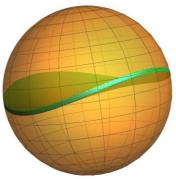


Escaping Saddle Points

- → Bounding the thickness of this "stuck" region is an important theoretical result which is key to the Improved-or-Localized property
 - Any point stuck during the course of ACD undergoes perturbation. This leads to two possible results: either the perturbed point decreases the objective function, or it is close to a second-order stationary point

$$\frac{Vol(R_{stuck})}{Vol(B_{\tilde{x}}^{(d)}(r))} \leq \frac{Vol(B_{\tilde{x}}^{(d-1)}(r))\left(\frac{\eta r\lambda\sqrt{\pi}}{\sqrt{d}}\right)}{Vol(B_{\tilde{x}}^{(d)}(r))}$$





Asynchronous Coordinate Descent

Asynchronous coordinate descent is defined by the following update rule:

$$x_i^{j+1} = x_i^j - \eta \nabla_i f(\hat{x}^j)$$

 x^{j} - Global point within ACD (x^{j+1} is the subsequent point)

 η - Learning rate (step size)

i - The selected block (each worker assigned a block, can also be chosen at random)

 \hat{x}^{j} - Decayed point (a worker's point may be outdated by the update is complete)

$$\hat{x}^{j} = \left(x_{1}^{j-d(j,1)}, x_{2}^{j-d(j,2)}, \dots, x_{N}^{j-d(j,N)}\right) \qquad d(j) = \max_{1 \le n \le N} \{d(j,n)\} \le \tau$$

Note: delays cause a loss of monotonicity!

Project Goals

Main Goals:

- → Implement the Saddle Escaping Asynchronous Coordinate Descent algorithm
 - Includes optimizing the selection of hyper-parameters within the algorithm
- → Test and analyze the convergence of SEACD
 - Compare with both regular gradient descent (GD) and perturbed gradient descent (PGD)
 - This comparison isn't necessarily "fair", as GD/PGD are not asynchronous

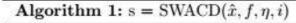
Approach: SEACD Algorithm

The Saddle Escaping Asynchronous Coordinate Descent (SEACD) algorithm consists of three inner algorithms:

- → Single Worker Asynchronous Coordinate Descent (SWACD)
- → Global Asynchronous Coordinate Descent (GACD)
- → Perturbed Asynchronous Coordinate Descent (PACD)

Approach: SWACD Algorithm

Single Worker Asynchronous Coordinate Descent (SWACD)



Input: Shared point $\hat{x} \in \mathbb{R}^N$ (the read coordinate information that may be outdated by the end of the algorithm), objective function f, learning rate (step-size) η , updating block i(containing coordinates c)

Output: The update s to the shared solution (product of the gradient and step size)

```
1 \bar{x} \leftarrow \hat{x};

2 for c \in i do

3 | \bar{x} \leftarrow \bar{x} - \eta \nabla_c f(\bar{x}) \mathbf{e}_c;

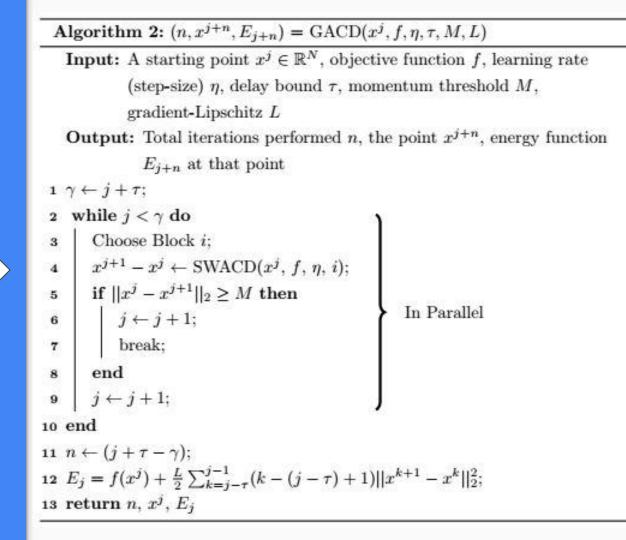
4 end

5 s \leftarrow \bar{x} - \hat{x};

6 return s
```

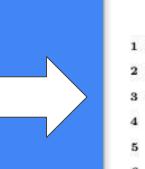
Approach: GACD Algorithm

Global Asynchronous Coordinate Descent (GACD)



Approach: PACD Algorithm

Perturbed Asynchronous Coordinate Descent (PACD)



Algorithm 3: $(x^{j+1}, E_{i+1}) = PACD(x^j, f, \eta, \tau, r, T, L)$ **Input:** A starting point $x^j \in \mathbb{R}^N$, objective function f, learning rate (step-size) η , delay bound τ , perturbation radius r, escaping time bound T, gradient-Lipschitz L**Output:** The following point x^{j+1} (after T steps of perturbation), energy function E_{i+1} at that point 1 $\xi \leftarrow$ uniformly $\sim \mathbb{B}(0, r);$ 2 $y^0 \leftarrow x^j + \xi$: $s t \leftarrow 0$: 4 while t < T do 5 Choose Block *i*; 6 $y^{t+1} - y^t \leftarrow \text{SWACD}(y^t, f, \eta, i);$ 7 $t \leftarrow t+1;$ In Parallel s end 9 $E_{i+1} = f(y^T) + \frac{L}{2} \sum_{k=T-\tau}^{T-1} (k - (T - \tau) + 1) ||y^{k+1} - y^k||_2^2;$ 10 $x^{j+1} = y^T$: 11 return x^{j+1}, E_{j+1}

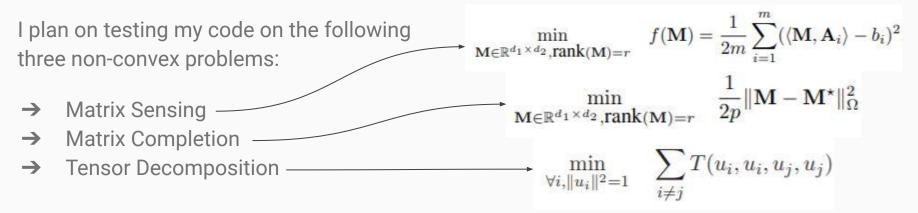
Approach: SEACD Algorithm

Saddle Escaping Asynchronous Coordinate Descent (SEACD)

Algorithm 4: $(x_{\epsilon}^*) = \text{SEACD}(x^0, f, \eta, r, \tau, T, \mathcal{F}, M, L)$ **Input:** An initial point $x^0 \in \mathbb{R}^N$, objective function f, learning rate (step-size) η , perturbation radius r, delay bound τ , escaping time bound T, function change threshold \mathcal{F} , momentum threshold M, gradient-Lipschitz L**Output:** Returns an ϵ -second-order stationary point x_{ϵ}^* 1 $E_0 \leftarrow f(x^0);$ **2** $j \leftarrow 0$: 3 for $s = 1, 2, 3, \dots$ do $n, x^{j+n}, E_{j+n} \leftarrow \text{GACD}(x^j, f, \eta, \tau, M, L);$ 4 5 $j \leftarrow j + n$: if $(E_i - E_{i-n}) > -\mathscr{F}$ then 6 $x^{j+1}, E_{j+1} \leftarrow \text{PACD}(x^j, f, \eta, \tau, r, T, L);$ 7 8 $j \leftarrow j + 1;$ if $(E_i - E_{i-1}) > -\mathcal{F}$ then 9 break; 10 end 11 end 12 13 end 14 return x^j

- → Each of these algorithms (including GD and PGD) will be implemented from scratch in Python using the NumPy software
- → Later implementation (for validation) may also be done within PyTorch in Python

Validation Methods



- → I will first reproduce the results from these problems in papers [4] and [5] using PGD before testing SEACD
- → I plan on using a synthetic database for testing
 - The data is arbitrarily complex

Deliverables

For this semester, I aim to build from scratch the following algorithms:

- \rightarrow Gradient Descent (GD)
- → Perturbed Gradient Descent (PGD)
- → Single Worker Asynchronous Coordinate Descent (SWACD)
- → Global Asynchronous Coordinate Descent (GACD)
- → Perturbed Asynchronous Coordinate Descent (PACD)
- → Saddle Escaping Asynchronous Coordinate Descent (SEACD)

Milestones and Timeline

My major milestones are implementing and testing each one of the algorithms described on the previous slide

Rough Timeline:

- October-November: Implement and validate results on one of the test problems for PGD and GD
- November-January: Implement and validate results from each test problem for SEACD, optimize hyper-parameters, and analyze convergence

References

- 1. How to Escape Saddle Points Efficiently, Jin et al. <u>https://arxiv.org/pdf/1703.00887.pdf</u>
- 2. On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points, Jin et al. https://arxiv.org/pdf/1902.04811.pdf
- 3. Asynchronous Coordinate Descent under More Realistic Assumptions, Sun et al. <u>https://arxiv.org/pdf/1705.08494.pdf</u>
- 4. Escaping From Saddle Points Online Stochastic Gradient for Tensor Decomposition, Ge et al. https://arxiv.org/pdf/1503.02101.pdf
- 5. No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis, Ge et al. https://arxiv.org/pdf/1704.00708.pdf
- 6. Ji Liu, Stephen J. Wright, Christopher Re, Victor Bittorf, and Srikrishna Sridhar. An asynchronous parallel stochastic coordinate descent algorithm. 16(1):285-322, 2015.
- 7. F. Niu, B. Recht, C. Re, and S. J. Wright, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, Advances in Neural Information Processing Systems, 24 (2011), pp. 693–701.
- 8. Kfir Y Levy. The power of normalization: Faster evasion of saddle points. arXiv:1611.04831 2016
- 9. Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic gradient for tensor decomposition. In COLT, 2015.