
AMSC 663 Project Proposal
Marco Bornstein

Advisor: Dr. Furong Huang

Problem Formulation

Given a non-convex function f potentially having many saddle points, what
properties will guarantee asynchronous coordinate descent to escape from
strict saddle points and converge to a local minima?

Non-convex Issues

- In non-convex settings, convergence to
first-order stationary points is not satisfactory

- Saddle points are the main cause culprit, as
they are first-order stationary yet correspond
to highly suboptimal solutions

- For many non-convex problems, it is sufficient
to find a local minimum

Synchronization Issues

- Parallel computing breaks data up and
processes it simultaneously by
multiple workers

- Algorithms (like SGD) require all
computed gradients be returned to the
global server before next iterate

- The speed of parallel computing thus
relies on the slowest worker

Current Literature

Non-convex Optimization:

➔ How to Escape Saddle Points Efficiently, Jin et al. (gradient descent)
https://arxiv.org/pdf/1703.00887.pdf

➔ On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle
Points, Jin et al. (GD/SGD) https://arxiv.org/pdf/1902.04811.pdf

Asynchronous Coordinate Descent (ACD):

➔ Asynchronous Coordinate Descent under More Realistic Assumptions, Sun et al.
https://arxiv.org/pdf/1705.08494.pdf

https://arxiv.org/pdf/1703.00887.pdf
https://arxiv.org/pdf/1902.04811.pdf
https://arxiv.org/pdf/1705.08494.pdf

Methods

Escaping saddle points:

➔ Jin et al. shows that perturbing a point at a potential saddle is successful
(no Hessian information needed)

Asynchronous Coordinate Descent (ACD) with delays:

➔ Sun et al. provides framework to prove that asynchronous block coordinate
descent converges for bounded delays

Escaping Saddle Points

➔ Say that a point xs is stuck at a saddle point
➔ Taking a ball of radius r (perturbation ball) centered at xs, select a point over a uniform

distribution to be a perturbed point xp
➔ The volume of the perturbation ball largely consists of regions where points will not be

pulled back towards the saddle point
➔ Thus, it is likely that xp can escape the saddle point if perturbed correctly

Escaping Saddle Points

➔ Bounding the thickness of this “stuck” region is an important
theoretical result which is key to the Improved-or-Localized
property
◆ Any point stuck during the course of ACD undergoes perturbation. This

leads to two possible results: either the perturbed point decreases the
objective function, or it is close to a second-order stationary point

Asynchronous Coordinate Descent

Asynchronous coordinate descent is defined by the following update rule:

xj - Global point within ACD (xj+1 is the subsequent point)
η - Learning rate (step size)
i - The selected block (each worker assigned a block, can also be chosen at random)
x̂j - Decayed point (a worker’s point may be outdated by the update is complete)

Note: delays cause a loss of monotonicity!

Project Goals

Main Goals:

➔ Implement the Saddle Escaping Asynchronous Coordinate Descent algorithm

◆ Includes optimizing the selection of hyper-parameters within the algorithm

➔ Test and analyze the convergence of SEACD

◆ Compare with both regular gradient descent (GD) and perturbed gradient
descent (PGD)

● This comparison isn’t necessarily “fair”, as GD/PGD are not asynchronous

Approach: SEACD Algorithm

The Saddle Escaping Asynchronous Coordinate Descent (SEACD) algorithm
consists of three inner algorithms:

➔ Single Worker Asynchronous Coordinate Descent (SWACD)
➔ Global Asynchronous Coordinate Descent (GACD)
➔ Perturbed Asynchronous Coordinate Descent (PACD)

Approach:
SWACD Algorithm

Single Worker
Asynchronous

Coordinate
Descent (SWACD)

Approach:
GACD Algorithm

Global
Asynchronous

Coordinate
Descent (GACD)

Approach:
PACD Algorithm

Perturbed
Asynchronous

Coordinate
Descent (PACD)

Approach:
SEACD Algorithm

Saddle Escaping
Asynchronous

Coordinate
Descent (SEACD)

Approach

➔ Each of these algorithms (including GD and PGD) will be
implemented from scratch in Python using the NumPy
software

➔ Later implementation (for validation) may also be done
within PyTorch in Python

Validation Methods

I plan on testing my code on the following
three non-convex problems:

➔ Matrix Sensing
➔ Matrix Completion
➔ Tensor Decomposition

➔ I will first reproduce the results from these problems in papers [4] and [5] using PGD
before testing SEACD

➔ I plan on using a synthetic database for testing
◆ The data is arbitrarily complex

Deliverables

For this semester, I aim to build from scratch the following algorithms:

➔ Gradient Descent (GD)
➔ Perturbed Gradient Descent (PGD)
➔ Single Worker Asynchronous Coordinate Descent (SWACD)
➔ Global Asynchronous Coordinate Descent (GACD)
➔ Perturbed Asynchronous Coordinate Descent (PACD)
➔ Saddle Escaping Asynchronous Coordinate Descent (SEACD)

Milestones and Timeline

My major milestones are implementing and testing each one of the algorithms
described on the previous slide

Rough Timeline:

❖ October-November: Implement and validate results on one of the test
problems for PGD and GD

❖ November-January: Implement and validate results from each test problem
for SEACD, optimize hyper-parameters, and analyze convergence

References

1. How to Escape Saddle Points Efficiently, Jin et al. https://arxiv.org/pdf/1703.00887.pdf
2. On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points, Jin et al.

https://arxiv.org/pdf/1902.04811.pdf
3. Asynchronous Coordinate Descent under More Realistic Assumptions, Sun et al. https://arxiv.org/pdf/1705.08494.pdf
4. Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomposition, Ge et al.

https://arxiv.org/pdf/1503.02101.pdf
5. No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis, Ge et al.

https://arxiv.org/pdf/1704.00708.pdf
6. Ji Liu, Stephen J. Wright, Christopher Re, Victor Bittorf, and Srikrishna Sridhar. An asynchronous parallel stochastic coordinate

descent algorithm. 16(1):285-322, 2015.
7. F. Niu, B. Recht, C. Re, and S. J. Wright, Hogwild: A lock-free approach to parallelizing stochastic gradient descent, Advances

in Neural Information Processing Systems, 24 (2011), pp. 693–701.
8. Kfir Y Levy. The power of normalization: Faster evasion of saddle points. arXiv:1611.04831 2016
9. Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic gradient for tensor

decomposition. In COLT, 2015.

https://arxiv.org/pdf/1703.00887.pdf
https://arxiv.org/pdf/1902.04811.pdf
https://arxiv.org/pdf/1705.08494.pdf
https://arxiv.org/pdf/1503.02101.pdf
https://arxiv.org/pdf/1704.00708.pdf

